
Résumé

Les programmes de prévention 
de chutes chez les aînés :

une méta-analyse secondaire bayesienne

Joseph F. Lucke  

Une méta-analyse secondaire bayesienne des programmes pour réduire les
chutes chez les aînés est effectuée pour démontrer le processus d’analyse baye-
sienne. La tradition statistique bayesienne fait l’objet d’une importante distinc-
tion relativement à la tradition statistique standard de Neyman-Pearson-Wald
(NPW). Dans le cadre des 12 études, l’ampleur de l’effet logit est utilisée pour
comparer des groupes thérapeutiques adhérant à un programme de prévention
à des groupes témoins qui ne sont pas soumis à un programme.Afin de mettre
en contraste l’analyse bayesienne, des méta-analyses d’effets indépendants et
d’effets fixes sont d’abord réalisées selon la tradition de NPW. Cette procédure
est suivie de méta-analyses d’effets indépendants et d’effets fixes qui reproduisent
numériquement les résultats NPW mais qui comportent des interprétations
différentes sur le plan conceptuel. Les dernières analyses comprennent des méta-
analyses prédictives et des méta-analyses d’effets aléatoires bayesiennes. Ces
résultats diffèrent sur le plan numérique de toutes les autres méta-analyses
antérieures et sur le plan conceptuel des analyses de NPW. Les analyses des effets
aléatoires permettent une hétérogénéité en ce qui a trait à l’ampleur de l’effet.
L’analyse prédictive génère une distribution d’effet hors-échantillon nouveau,
qui favorise non seulement l’hétérogénéité des effets mais aussi l’imprécision
dans les estimations de paramètres. Cette dernière analyse démontre que l’effi-
cacité des nouveaux programmes de prévention des chutes est moins définitive
que celle relevée dans l’échantillon. Les méthodes statistiques bayesiennes se
prêtent particulièrement bien au traitement des complexités contenues dans les
recherches en sciences infirmières.

Mots clés : tradition statistique bayesienne, ampleur de l’effet logit, tradition
statistique de Neyman-Pearson-Wald, analyse prédictive, méta-analyse secondaire
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Fall-Prevention Programs 
for the Elderly:A Bayesian 
Secondary Meta-analysis

Joseph F. Lucke

A secondary meta-analysis of programs to reduce falls in the elderly is under-
taken to demonstrate a Bayesian analysis.The Bayesian statistical tradition is
carefully distinguished from the standard Neyman-Pearson-Wald (NPW) statis-
tical tradition. In the 12 studies, the logit effect size is used to compare treatment
groups using a prevention program to control groups without a program.To
contrast the Bayesian analysis, independent-effects and fixed-effect meta-analyses
are first conducted in the NPW tradition.This is followed by Bayesian indepen-
dent-effects and fixed-effect meta-analyses that numerically replicate the NPW
results but have conceptually different interpretations. The final analyses
comprise Bayesian random-effects and predictive meta-analyses.These results
differ numerically from all the previous meta-analyses and conceptually from the
NPW meta-analyses.The random-effects analysis allows for heterogeneity in the
effect sizes.The predictive analysis yields the distribution of a new, out-of-sample
effect size, which accommodates not only the heterogeneity of the effects but
also the imprecision in the parameter estimates.This last analysis shows that the
effectiveness of new fall-prevention programs is less definitive than that found
in the sample. Bayesian statistical methods are particularly well-suited for the
complexities of nursing science studies.

Keywords: Bayesian statistical tradition, fixed-effect model, health-care outcomes,
hierarchical model, independent-effects model, logistic regression, logit effect
size, Neyman-Pearson-Wald statistical tradition, predictive analysis, random-
effects model, secondary meta-analysis

Hill-Westmoreland, Soeken, and Spellbring (2002) conducted a fixed-
effect meta-analysis of the success of programs to prevent falls in the
elderly.Their statistical analysis was based on the familiar Neyman-
Pearson-Wald (NPW) statistical tradition.The purpose of this article is to
illustrate the alternative Bayesian statistical tradition by conducting a sec-
ondary analysis of the same data. Bayesian statistical methods are rarely
used in nursing science. A fin de millénaire review of research using
Bayesian inference ranging from “archeology” to “social sciences” found
no reference to nursing science (Berger, 2000). I will first present a brief
sketch of the principles of the Bayesian statistical tradition.

The term “statistical tradition” is used here to emphasize the concep-
tual discontinuity between the two approaches.A research tradition, similar
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to a paradigm (Kuhn, 1962), is a global cluster of beliefs about the entities
and processes that make up the domain of inquiry and the methodolog-
ical norms by which the domain is to be investigated (Laudan, 1981).A
statistical tradition is by analogy a global set of ideas about the nature of
probability and principles for statistical applications. Bayesian statistics is
not another branch of NPW statistics but a comprehensive, alternative
stance on probability and statistics. Use of the word “tradition” also
emphasizes that concepts in the NPW tradition (e.g., significance, power)
may have no meaning in the Bayesian tradition, that concepts in the
Bayesian tradition (e.g., Bayes’s factor, prior distribution) may have no
meaning in the NPW tradition, and that identical numerical results may
have radically different interpretations (e.g., confidence intervals, hypoth-
esis tests).Table 1 provides a brief overview of the principal differences,
for which only a brief comparison can be provided here.

The NPW statistical tradition interprets probability as relative fre-
quency. Statistical inference is based on the fundamental concept of induc-
tive behaviour, behaviour that can be repeatedly evaluated as correct or
incorrect.The purpose of statistics is to develop rules for inductive
behaviour and to assess their performance according to their relative fre-
quency of success.With this approach, observations are considered
random variables that are controlled by fixed but unknown parameters.
For example, a statistical test will be acceptable if the rejection (behav-
iour) of a truly null (fixed and unknown) hypothesis will be incorrect
only 5% of the time (performance) in the long run (probability).
Confidence intervals, now favoured over significance tests (Altman,
Machin, Bryant, & Gardner, 2000), provide the set of points that would
not have been rejected by the corresponding significance test.

Joseph F. Lucke
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Table 1  Comparison of the Neyman-Pearson-Wald 
and Bayesian Traditions

Topic NPW Bayesian

Probability Relative frequency Logic of judgement

Inference Inductive behaviour Degrees of belief

Statistic Performance Evidence

Observations Random Fixed

Parameters Fixed Random

Confidence interval Random interval Fixed interval contains
covers fixed parameter random parameter
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The Bayesian tradition interprets probability as a logic of judgement for
those opinions that can be represented as degrees of belief (Howson &
Urbach, 1993).This logic is regulated by coherence, a counterpart to con-
sistency in deductive logic. Coherence ensures that a person cannot hold
degrees of belief that are uniformly disadvantageous.The remarkable
Ramsey-de Finetti Theorem shows that for judgements to be coherent
the corresponding degrees of belief must satisfy the axioms of probability
(Howson & Urbach).Thus, judgements can be represented by subjective
probabilities. This approach considers observations to be fixed and the
parameters of models that account for the data to be random. Bayesian
confidence intervals or credible intervals give the fixed interval in which
the random parameter can be found with the specified probability. It is
often the case that NPW confidence intervals have the exact same
numerical values as Bayesian credible intervals, but with different inter-
pretations.

Because coherent judgements are subjective probabilities, the full use
of the probability calculus is available for statistical inference. The
Bayesian principle of inference is Bayes’s Theorem, first posthumously
published by Bayes and Price (1763) but a trivial theorem in modern
probability theory.The application of Bayes’s Theorem is a four-step
process. First, the investigator develops the likelihood, which provides
the probability of the observations y given the values of a parameter θ,
written Pr(y|θ).The likelihood provides the evidential link between
the parameter and the observations (Royall, 1997). Second, because it is
uncertain, the investigator represents the parameter θ as a random vari-
able with a prior distribution Pr(θ) that reflects uncertainty regarding its
possible values.The prior distribution represents the information the
investigator possesses before any observations are made in the current
study.Third, the study is undertaken and the observations are made.
Fourth, Bayes’s Theorem provides the “updated” posterior distribution
regarding the parameter conditioned on the observations. Bayes’s
Theorem states

(1).

Roughly, Equation 1 states that

,

or, sardonically, that “Bayesians can be recognized by their posteriors.”

Posterior = likelihood × prior
data

Pr(θ|y) =Pr(y|θ)Pr(θ)
Pr(y)

Bayesian Meta-analysis
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Bayesian statistical inference requires a prior distribution representing
the investigator’s information regarding the parameter of interest.The
primary advantage of a prior is that it encapsulates previous knowledge
regarding the parameter under investigation.The primary disadvantage is
that an investigator’s prior could also be quite idiosyncratic. However,
several considerations moderate the choice of a prior. First, the chosen
prior is exposed to the scrutiny of the scientific community. Determining
the prior distribution forces the investigator to confront and make
explicit his or her beliefs, both justifiable and speculative, regarding the
phenomenon under investigation (Kadane, 1995). Second, the prior dis-
tribution is a representation, not a measurement, of one’s degrees of belief
(Hacking, 2001).Thus the investigator may temper the prior to more rea-
sonably represent degrees of belief of the scientific community rather
than actual beliefs (Shimony, 1970/1993).And third, a prior distribution
can be made diffuse or vague so that it has little influence on the data
(Edwards, Lindman, & Savage, 1963).The requirement of a publicly pre-
sented prior makes the subjective evaluation of prior knowledge more
objective.

Meta-analysis is particularly well-suited for an introduction to
Bayesian statistical analysis.The data sets tend to be small but fraught with
inferential problems not found in usual analyses. Bayesian meta-analysis
has a growing and increasingly sophisticated literature (Beard, Curry,
Edwards, & Adams, 1997; Berlowitz et al., 2002; Brophy, Belisle, &
Joseph, 2003; Brophy & Joseph, 2000; Brophy, Joseph, & Rouleau, 2001;
Burr, Doss, Cooke, & Goldschmidt-Clermont, 2003; DuMouchel, 1990;
Higgins & Spiegelhalter, 2002; Louis & Zelterman, 1994; Nam,
Mengersen, & Garthwaite, 2003; Spiegelhalter & Best, 2003; Stangl &
Berry, 2000;Warn,Thompson, & Spiegelhalter, 2002).The presentation
here is intended to serve as an entry to Bayesian meta-analysis and to
other Bayesian methods.

The remainder of this paper is organized as follows. First, the
observed fall-prevention data and a metric for assessing treatment effects,
namely the logit effect size, are presented. Second, two brief NPW analy-
ses of the data, an independent-effects analysis and a fixed-effect analysis,
are undertaken to provide a comparison for the Bayesian analyses.Third,
two Bayesian analyses, also an independent-effects analysis and a fixed-
effect analysis, are presented to compare to the NPW analyses.These two
sets of analyses yield similar numerical results.The purpose is to demon-
strate the conceptual differences between the two traditions even when
the numbers are the same.And fourth, a random-effects Bayesian analysis
coupled with a predictive analysis is presented.This last analysis shows
how the Bayesian approach can utilize more realistic assumptions.

Joseph F. Lucke
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Bayesian Meta-analysis
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The Data and the Logit Effect Size

Table 2 presents the data on 12 select studies of falls in the elderly (Hill-
Westmoreland et al., 2002).The first column contains the study number
as enumerated by those authors. Each study i , i=1, …,12, comprises two
groups, a treatment group j = 1 which had an intervention for the pre-
vention of falls, and a control group j = 0 which had no such interven-
tion. Let yij denote the number of subjects experiencing one or more
falls from a sample of nij subjects in group j of study i . Let pij = yij/nij
denote the proportion of falls.The Control columns give the observed 
yi0, ni0, and pi0; the Treatment columns give the observed yi1, ni1, and pi1.

Table 2  Meta-analytic Data on 12 Studies of Falls in the Elderly

Control Treatment Comparison

Study Falls/Sample Prop. Falls/Sample Prop. Logit SE

1 62/117 0.53 53/116 0.46 -0.29 0.26

2 111/213 0.52 59/184 0.32 -0.84 0.21

3 45/94 0.48 34/75 0.45 -0.10 0.31

4 40/92 0.43 42/88 0.48 +0.17 0.30

5 129/261 0.49 91/221 0.41 -0.33 0.18

6 17/50 0.34 72/180 0.26 +0.40 0.34

7 61/81 0.75 56/79 0.71 -0.23 0.36

8 3/15 0.20 3/30 0.10 -0.81 0.89

9 6/13 0.46 2/14 0.14 -1.64 0.94

10 68/144 0.47 52/147 0.35 -0.49 0.24

11 8/47 0.17 68/332 0.20 +0.23 0.41

12 223/607 0.37 268/952 0.28 -0.39 0.11

Hill-Westmoreland et al. (2002) used the difference effect, di = pi1 – pi0,
to estimate the treatment effect (Rosenthal, 1994). Although the differ-
ence effect has a simple and straightforward interpretation, di has a
number of defects, not least of which is that it is confounded with the
baseline proportion found in the control group (Fleiss, 1994).A better
measure of treatment effect, and the one used here, is the logit effect

(2)wi = log
pi1 - log

pi0(1 - pi1) (1 - pi0)
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with standard error

(Rosenthal).Although the logit is less intuitive than the difference, it is
preferable on several grounds, two of which are given here. First, the
logit effect is not confounded with the baseline proportion and may
assume any value regardless of the proportions being compared (Fleiss).
And second, the logit effect is a natural parameter of log-linear and
logistic regression models (Fleiss).The logit effects and their standard
errors for the 12 studies are also given in the last two columns of
Table 2. Negative logits favour treatment over control.

Neyman-Pearson-Wald Analyses

Independent-Effects Analysis

The independent-effects analysis addresses the treatment effect of each
study separately from any other study. It is not a meta-analysis itself, but
such analyses are invariably included in a meta-analysis to display the
individual effects.The sample logit effects follow an asymptotic normal
distribution with mean w i and standard deviation SE(w i). Figure 1
displays the logit effect for each study together with the respective 
95% confidence intervals. Only three studies, 2, 10, and 12, had 95%
confidence intervals that excluded zero, or, equivalently, rejected the 
null hypothesis of wi = 0 with a two-tailed significance at .05. Hill-
Westmoreland et al. (2002), using difference effects, found Study 9 to be
significant and not Study 10.Thus, the difference effect and logit effect
need not produce identical results.

Fixed-Effect Analysis

A fixed-effect meta-analysis assumes the existence of a fixed but
unknown population treatment effect. Each study provides a sample esti-
mate of the population effect.The estimator of the population fixed
effect is the weighted mean of the study sample effects and likewise
follows an asymptotic normal distribution (Fleiss, 1994).The first row of
Table 3 presents the weighted mean logit effect of w = -0.35, its standard
error, and its 95% confidence interval. Because the interval for this statis-
tic excludes 0, the null hypothesis of no overall treatment effect is
rejected.This fixed-effect re-analysis using logit effects yields the same
conclusion as Hill-Westmoreland et al.’s (2002) original analysis.

Joseph F. Lucke
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Bayesian Analyses I

Independent-Effects Analysis

A Bayesian independent-effects analysis is presented here for comparison
with the NPW version. Again, this analysis is, strictly speaking, not a
meta-analysis, and is not even needed as an intermediary step in the

Bayesian Meta-analysis
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Figure 1  Forest Plot of Logit Effect Sizes for the NPW Analyses

Note: Circles with horizontal bars represent independent logit effects and their respective
95% confidence intervals.The solid vertical line is the fixed logit effect and the dashed ver-
tical lines are its 95% confidence interval.

Table 3  Meta-analytic Results from NPW and Bayesian Analyses

Logit Standard Confidence Hypothesis:
Analysis Effect Error Interval Effect < 0

NPW Fixed -0.35 0.07 -0.48, -0.21 z = -5.07

Bayesian Fixed -0.35 0.07 -0.48, -0.21 Pr(β < 0) > 0.999

Bayesian Random -0.32 0.10 -0.51, -0.11 Pr(µβ < 0) = 0.996

Bayesian Predictive -0.32 0.23 -0.79, +0.20 Pr(B < 0) = 0.93

06-Lucke  9/8/04  11:02 AM  Page 55



Bayesian analysis. Nevertheless, it is frequently presented to display the
individual effects.The likelihood is based on the binomial-logistic regres-
sion model (McCaullagh & Nelder, 1989).The propensity of a subject to
experience at least one fall in the control group of study i is the logistic
function of αi.The propensity to fall in the treatment group is the logis-
tic function of αi + βi, where βi is the treatment effect. If the treatment
reduces the propensity to fall, βi will be negative.The Bayesian analysis
requires prior distributions for the parameters αi and βi. Because there is
no prior information on these parameters and because the desire here is
for the observations to have maximal influence on the posterior distrib-
utions, diffuse priors were chosen for both sets of parameters. In particu-
lar, the priors were chosen to be normal distributions with mean of zero
and standard deviation of 1,000.These priors stipulate that this investiga-
tor was 95% sure that the parameter values lay between -2,000 and
2,000.

Equation 1 in principle supplies the posterior distributions of the
12 α i’s and the 12 βi’s. However, substituting the appropriate formulae
from the distributional assumptions for the likelihood of yij and the priors
for the α i and the βi yields a formula that is analytically intractable.
Numerical methods must be employed to obtain the posterior distribu-
tions. One popular approach is to numerically simulate the posterior
distributions of each parameter to a high degree of accuracy. Given the
simulated posteriors, summary information regarding the parameters can
be readily obtained.The current widely used procedure for obtaining
numerical solutions is Markov Chain Monte Carlo (MCMC) simulation
using Gibbs sampling (Gelman, Carlin, Stern, & Rubin, 2004). MCMC
is an algorithm in which samples are taken from each parameter’s distri-
bution in a round-robin fashion and used to update the other distribu-
tions in the model.This sampling procedure is iterated several thousand
times, and under suitable mathematical conditions the distributions of the
parameters will converge to a unique set of limit distributions.These
limit distributions can then be used to extract statistical information
regarding the parameters.This independent-effects model was pro-
grammed in WinBUGS 1.4 (Spiegelhalter,Thomas, Best, & Lunn, 2002).
To stabilize the starting distributions, an initial (burn-in) run of 2,000
iterations was taken without sampling the parameters.The sampling
simulation was then run for another 20,000 iterations to obtain the limit
distributions.The simulation takes about 12 seconds on a reasonably fast
(1 GHz) desktop computer. S-PLUS Professional 6.2 (Insightful Corpor-
ation, 2001) and Microsoft Excel were used for additional computations
and graphics.

Figure 2 displays the independent effects together with their 95%
Bayesian credible intervals.These are very similar in numerical value to

Joseph F. Lucke
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the 95% confidence intervals of the NPW analysis in Figure 1.The single
exception appears to be study 9, which has a smaller Bayesian posterior
mean and larger standard error β9 = -1.86, se = 1.04 than the corre-
sponding NPW estimate of w 9 = -1.64, se = 0.94.This discrepancy is
most likely due to the inaccuracy of the NPW asymptotic estimator in a
small sample of n9,0 + n9,1 = 27 subjects.

More important than the numerical similarity between the NPW and
Bayesian results is that the interpretation is completely different.The
credible intervals give the fixed interval in which the random treatment
effect probably lies, in sharp contrast to the NPW interpretation of the
random interval that probably covers the fixed treatment effect.

Bayesian Meta-analysis
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Figure 2  Forest Plot of Logit Effect Sizes for the Bayesian Analyses

Note: Circles with horizontal bars represent independent logit effects and their respective
95% credible intervals.The solid vertical line is the fixed logit effect and the dashed verti-
cal lines are its 95% credible interval.

Fixed-Effect Analysis
The fixed-effect analysis again assumes that there is a unique treatment
effect for all the studies and that each study displays this unique effect
accompanied by random error.The fixed-effect analysis merely replaces
each study-specific βi in the independent-effects analysis with a single β
for all studies in the binomial-logistic regression.Thus the treatment
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effect is, instead, a logistic function of αi + β.The prior distributions for
the 12 αi’s and the one β are the same normal distributions as in the
independent-effects case.

Again, the resulting posterior distribution is analytically intractable
and MCMC simulation was used.The second row of Table 3 presents the
Bayesian fixed-effect result.The numerical values are identical to those
of the NPW analysis but the interpretation in the Bayesian case is that
Pr(-0.48 ≤ β ≤ -0.21) = .95. Furthermore, because β is a random vari-
able, probabilistic hypotheses can be entertained. Of interest here is
whether the fall-prevention programs reduced the proportion of falls,
which translates into the hypothesis whether β is negative.The probabil-
ity is that β < 0 can be readily evaluated from its relevant posterior dis-
tributions.The rightmost column of Table 3 shows that Pr(β < 0) > .999.

Bayesian Analyses II

Random-Effects Analysis

The purpose of the Bayesian fixed-effect analysis was to demonstrate that
the Bayesian approach can replicate the numerical results of the NPW
approach, even though the conceptual interpretations of the results are
different and incompatible between the two traditions.The purpose of
the random-effects analysis is to show how the Bayesian approach can
easily accommodate more realistic assumptions in the statistical model.

The assumption of a unique, fixed treatment effect for each study is
excessively restrictive. It implies that all differences among study effects
are due solely to random error. It ignores possible differences in settings
and implementations of the prevention programs that would have caused
different effects in addition to random fluctuations.A more realistic and
plausible assumption is that the population effects themselves arise from a
distribution of treatment effects.The crucial assumption required for such
an analysis, called exchangeability, is that the magnitudes of the program
effects are equally as likely to appear in one study as in another (Gelman
et al., 2004).The assumption of exchangeability allows for heterogeneous
but related effects in place of the assumption of a homogeneous effect.

As in the previous analyses, the binomial-logistic regression model is
assumed.The baseline propensity to experience a fall is assumed to be
specific to each study, implying that the αi’s are again assumed to be
fixed.The βi’s, however, are not assumed to be fixed for each study but
assumed to be part of an overall effect of fall prevention on all the
studies.To accommodate heterogeneity of effects among the studies, the
βi’s are themselves assumed to be independently distributed random vari-
ables from a normal distribution with unknown mean µβ and unknown
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variance σ2
β.This likelihood is equivalent to a two-level logistic regres-

sion (Rice, 2001).
To complete the Bayesian specification, prior distributions are

required for the 12 αi’s, µβ, and σ2
β.Again, diffuse priors are chosen so

that prior beliefs have little influence on the observed data.The fixed αi’s
are once again given a normal prior with a mean of zero and a standard
deviation of 1,000.The priors for the parameters of the distribution of
the random treatment effects are similarly diffuse.The prior for µβ is a
normal distribution with a mean of zero and a standard deviation of
1,000, and the prior for σβ

-2 is a diffuse gamma distribution.Again, the
formula for the posterior distribution is analytically intractable, so that
MCMC methods are used to simulate the posterior distributions.

Figure 3 presents the posterior mean logit effect for each of the
12 studies together with their 95% credible intervals.The first feature to
note is that all the logit effects are negative, in contrast to the independent-
effects analysis in which the effects of studies 4, 6, and 11 were positive.

Bayesian Meta-analysis
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Figure 3  Forest Plot of Random Logit Effect Sizes

Note: Circles with horizontal bars denote the posterior mean logit effect sizes and their
respective 95% credible intervals.The solid vertical line is the posterior mean logit effect size
for the distribution of effects.The dashed vertical lines contain its 95% credible interval.The
dot-dashed vertical lines contain the 95% credible interval for the predictive posterior mean
effect size.
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The second feature to note, related to the first, is that the logit effects tend
to be closer together than in the independent-effects analysis, with no
extreme cases. (The x-axis ranges only from -1 to 0.4 rather than from -5
to 2 for the independent-effects analysis.) These two features demonstrate
the well-known phenomena of “shrinkage towards the mean” and
“studies borrowing strength from each other” found in random-effects
analyses.

The mean posterior mean treatment effect is µβ = -0.32 with 
Pr(-0.51 ≤ µβ ≤ -0.11) = .95.This mean and credible interval is also dis-
played in Figure 3.As shown in Table 3, the mean posterior mean and its
standard error are slightly larger than that of the fixed logit effect.This
shrinkage towards zero accompanied by a larger standard error is also
common in random-effects models.The probability that µβ is negative is
.996.

Predictive Analysis

The random-effects analysis also yields the posterior distribution of the
logit treatment effects.The distribution of treatment effects is a normal
distribution (by assumption) with a posterior mean for µβ = -0.32 and a
posterior mean for σβ = 0.17.Thus it would be reasonable to predict that
any treatment effect not yet observed would on average be -0.32 with a
95% credible interval of [-0.67, + 0.02]. However, a logical defect in
making this particular out-of-sample prediction is that only the means of
the distributions of µβ and σβ are used.A more realistic out-of-sample
prediction would include the imprecision of µβ and σβ as well. Let B
denote the out-of-sample treatment effect.A Bayesian predictive analysis
obtains the distribution of B by sampling it from a normal distribution
with mean µβ and variance σ2

β. However, µβ and σβ are not fixed points
but random variables.Thus, the posterior distribution of B will have the
same mean as the posterior distribution of µβ but will have a larger vari-
ance than σ2

β, comprising the variance of the normal distribution, the
posterior variance of µβ, and the posterior variance of σ2

β.
Figure 3 presents the posterior predictive mean B = -0.32 with a 95%

credible interval ranging from -0.79 to +0.20, considerably wider than
the point-based credible interval mentioned in the previous paragraph.
The hypothesis test shows that B only has probability of .93 of being
negative.

Discussion

The Bayesian statistical tradition offers a comprehensive view of the
nature of probability and statistical inference. Probability is interpreted as
a logic of judgement regarding degrees of belief, and statistical inference
is the revision of those subjective judgements according to observational
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evidence. Unobserved quantities are random variables, known observa-
tions are fixed, inferences are based only on the observations, hypotheses
can be probabilistically compared one with another, and credible inter-
vals give the interval that probably contains the unobserved quantity.The
NPW tradition also offers a comprehensive view of the nature of proba-
bility and statistical inference. Probability is interpreted as relative fre-
quency, and statistical inference is the evaluation of the performance of
decision rules for inductive behaviour. Unknown parameters are fixed,
known observations are random, inferences are not based solely on the
observations, statistical hypotheses are choices between inductive behav-
iours, and 1 – α-level confidence intervals give the interval that contains
the point-null hypotheses that would not have been rejected by an
α-level statistical test. Comparisons between the two traditions cannot
be made on statistical grounds because each tradition contains its own,
internal standards of evaluation, standards that need not be applicable to
the other tradition. Choosing between traditions must instead be based
on higher-order cognitive values regarding the goals and norms of scien-
tific inference (Laudan, 1984). Many statisticians and philosophers of
science believe that the Bayesian tradition offers a natural and common-
sense interpretation of probability and statistical inference.These same
authors often remark on the persistent tendencies of investigators to
interpret p values as evidential support and confidence intervals as fixed
intervals of probability as indications of the inferential perversity of the
NPW tradition.

The demonstration here shows that a Bayesian statistical analysis can
replicate an NPW analysis by yielding the same numerical results.
The fixed-effect meta-analyses addressed whether the fall-prevention
programs reduced the proportion of falls — that is, had an effect in the
negative direction.The NPW approach yielded a logit effect size of 
w = -0.35 with a 95% confidence interval ranging from -0.48 to 
-0.21.The Bayesian approach likewise yielded a logit effect size of 
β = -0.35 with a 95% credible interval ranging from -0.48 to -0.21.
These two identical numerical results have incommensurable interpreta-
tions.The NPW confidence interval holds that the set of point-null
hypotheses from -0.48 to -0.21 would not have been rejected by a two-
tailed test at the 5% significance level.The Bayesian credible interval
holds that β falls between -0.48 and -0.21 with probability .95.

The random-effects analysis further showed how a Bayesian analysis
could go beyond the assumption of a fixed effect by allowing a distribu-
tion of effects. By assuming a distribution of effects, the Bayesian analysis
accommodated possible heterogeneity among study-specific effects and
yielded the overall mean effect.The Bayesian analysis also yielded the
entire distribution of effects along with its mean µβ = -0.32 and standard
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deviation σβ= -0.17.The Bayesian predictive analysis also yielded the dis-
tribution of an out-of-sample effect that included not only the variability
in effects but also the variability in estimating the distribution of the
effects.This final result indicates that future fall-prevention programs can
expect, with 95% confidence, to have a logit effect size between -0.8 and
+0.2.Thus the predictive analysis indicates that the effect of fall-preven-
tion programs is less definitive than might be presupposed from the
either the fixed-effect or random-effects analyses.

To begin using Bayesian methods, one must be prepared to undertake
substantial changes in one’s ideas about statistics.This demonstration,
though simple, was sufficient to uncover some of the advantages of
Bayesian statistical methods.The Bayesian approach is known for its
ability to handle complicated and unusual situations (Best, Spiegelhalter,
Thomas, & Brayne, 1996).Thus, the Bayesian statistical tradition appears
well-suited for the difficult inferential problems found in nursing science.
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